这道题目展示了「裂项相消法」,适用于分母是连续整数乘积的情况,通过拆分为两个简单分式相减的形式,让中间项互相抵消,从而简化计算。
解方程:X72+X90+X110=3X(18×9+19×10+110×11)=3X(18−19+19−110+110−111)=3X(18−111)=3X⋅388=3∴X=88\begin{aligned} &\text{解方程:} \quad \frac{X}{72} + \frac{X}{90} + \frac{X}{110} = 3 \\ \\ &X \left( \frac{1}{8 \times 9} + \frac{1}{9 \times 10} + \frac{1}{10 \times 11} \right) = 3 \\ \\ &X \left( \frac{1}{8} - \frac{1}{9} + \frac{1}{9} - \frac{1}{10} + \frac{1}{10} - \frac{1}{11} \right) = 3 \\ \\ &X \left( \frac{1}{8} - \frac{1}{11} \right) = 3 \\ \\ &X \cdot \frac{3}{88} = 3 \\ \\ &\therefore \quad X = 88 \end{aligned}解方程:72X+90X+110X=3X(8×91+9×101+10×111)=3X(81−91+91−101+101−111)=3X(81−111)=3X⋅883=3∴X=88